
November 24, 2015 
Jason Kridner 

Co-author of BeagleBone Cookbook 
Board member at BeagleBoard.org Foundation 

Sitara Applications Engineering at Texas Instruments 

1 



2 

All you need is in the box 

Proven ecosystem from prototype     
to product 

Truly flexible open hardware and 
software development platform 

BeagleBone Black – the most flexible solution in open-source computing 

•  Ready to use 
•  USB client network 
•  Built-in tutorials 
•  Browser based IDE 
•  Flashed w/Debian 

•  Fast and flexible 
•  1-GHz Sitara ARM 
•  2x200-MHz PRUs 
•  512-MB DDR3 
•  On-board HDMI 
•  65 digital I/O 
•  7 analog inputs 

•  Support for numerous 
Cape plug-in boards  
http://beaglebonecapes.com  

~$50 



3 

Boot  
Button 

Reset Button 
LEDS 

10/100 Ethernet 
DC Power 

USB Client 

Serial  
Debug 

USB Host 

microHDMI 

microSD 
Expansion slot for 
additional storage  

4-GB on-board 
storage using 
eMMC 
•  Pre-loaded with 

Debian Linux 
Distribution  

•  8-bit bus 
accelerates 
performance 

•  Frees the microSD 
slot to be used for 
additional storage  
for a less 
expensive solution 
than SD cards 

1-GHz Sitara 
AM335x 
ARM® 
Cortex™-A8 
processor 

Easily connects 
to almost any 
everyday device 
such  
as mouse  
or keyboard 

512MB DDR3 
Faster, lower power  
RAM for  
enhanced user-friendly 
experience 

Provides a 
more 
advanced user 
interface and 
up to 150% 
better 
performance 
than ARM11 

Connect 
directly to 
monitors  
and TVs 

Development interface 
and directly powers 
board from PC 

Expansion 
headers 

Enable cape hardware 
and include: 
•  65 digital I/O 
•  7 analog 
•  4 serial 
•  2 SPI 
•  2 I2C 
•  8 PWMs 
•  4 timers 
•  And much much more! 
 

Power Button 

Money saving extras: •  Power over USB 
•  Included USB cable 

•  4-GB on-board storage 
•  Built-in PRU microcontrollers  



4 

digitalWrite() 





6 

•  Medical analysis, assistance and 
information management 

•  Home information, automation and 
security systems 

•  Home and mobile entertainment 
and educational systems 

•  New types of communications 
systems 

•  Personal robotic devices for 
cleaning, upkeep and 
manufacturing 

•  Remote presence and monitoring 
•  Automotive information 

management and control systems 
•  Personal environmental exploration 

and monitoring 



•  99 recipes covering 
–  Basics 
–  Sensors 
–  Displays and outputs 
–  Motors 
–  Internet of things 
–  Kernel 
–  Real-time I/O 
–  Capes 

7 



•  Connect to the board per recipe 1.2 
–  http://beagleboard.org/getting-started  

•  Verify the software image per recipe 1.3 and 
potentially updating per recipe 1.9 
–  http://beagleboard.org/latest-images  

•  Components 
–  BeagleBone Black 
–  L293D H-Bridge IC 
–  5V DC motor 

•  For other voltages, verify H-bridge compatibility 
–  Breadboard and jumper wire 

•  Alternatively, I’ve had a PCB fabricated 

8 



•  DC voltage causes motor 
to turn 

•  Brush contact resets drive 
after partial revolution  

•  Drive strength is 
proportional to input 
voltage 

•  There’s a maximum input 
voltage 

•  Reversing voltage 
reverses direction 

•  BeagleBone Black doesn’t 
supply enough current on 
its I/O pins 

9 



•  Enables approximating 
a voltage by turning on 
and off quickly 

•  BeagleBone Black has 
8 hardware PWMs 

•  PRU can produce 
another 25 more with 
appropriate firmware 

10 



•  Enables reversing 
direction of the motor 

•  Integrates driver as 
well 

11 



•  Pin 1 is the speed 
control 

•  Pin 2 is the forward 
drive 

•  Pin 7 is the backward 
drive 

12 



13 

•  Pin 1 to P9_14 “EN” 
•  Pin 2 to P8_9 “FWD” 
•  Pin 3 to “Motor +” 
•  Pin 4 and 5 to DGND 

•  Pin 6 to “Motor -” 
•  Pin 7 to P8_11 “BWD” 
•  Pin 8 to VDD_5V 
•  Pin 9 to VDD_3V3 



 
var b = require('bonescript'); 
var motor = { SPEED: 'P9_14', FORWARD: 
'P8_9', BACKWARD: 'P8_11' }; 
var FREQ = 50; 
var STEP = 0.1; 
var count = 0; 
var stop = false; 
 
b.pinMode(motor.FORWARD, b.OUTPUT); 
b.pinMode(motor.BACKWARD, b.OUTPUT); 
b.analogWrite(motor.SPEED, 0, FREQ, 0, 0); 
 
var timer = setInterval(updateMotors, 100); 
 
function updateMotors() { 
    var speed = Math.sin(count*STEP); 
    count++; 
    Mset(motor, speed); 
} 

•  Define the pins 
•  Keep track of state 
•  Setup pins initially 
•  Use a 100ms timer to 

update the motors 
•  Use a sine wave to 

increment/decrement 
the speed for test 

•  Call ‘Mset’ to update 
the PWM and direction 

14 



 
 
function Mset(motor, speed) { 
    speed = (speed > 1) ? 1 : speed; 
    speed = (speed < -1) ? -1 : speed; 
    //console.log("Setting speed = " + speed); 
    b.digitalWrite(motor.FORWARD, b.LOW); 
    b.digitalWrite(motor.BACKWARD, b.LOW); 
    if(speed > 0) { 
     b.digitalWrite(motor.FORWARD, b.HIGH); 
    } else if(speed < 0) { 
     b.digitalWrite(motor.BACKWARD, b.HIGH); 
    } 
    b.analogWrite(motor.SPEED, 
                             Math.abs(speed), FREQ); 
} 

•  Put a cap on the 
maximum and 
minimum at 1 and -1 

•  Set the drive signals 
for direction 

•  Adjust PWM based 
upon the speed 

15 



 
 
function doStop() { 
    clearInterval(timer); 
    Mset(motor, 0); 
} 
 
process.on('SIGINT', doStop); 

•  Detect when program 
is being stopped by a 
^C 

•  Stop the timer and 
disable the motor 

16 



17 



•  Learn more about H-Bridges and motors 
–  https://itp.nyu.edu/physcomp/lessons/dc-motors/dc-

motors-the-basics/   
•  My simple PCB 

–  https://oshpark.com/shared_projects/Mz40o0aN  
•  Shortcuts to updates and examples from the book 

–  http://beagleboard.org/cookbook  

18 


